доказать что в равнобедренном треугольнике авс медианы аn и сm к боковым равны между собой.
для этого докажем что треугольники амс и сna равны между собой,
1) угол а равен углу с по условию тк это равнобедр треуг
2) ас - общая
3) ам= аn тк, ав=вс, см и an медианы делящие стороны пополам следовательно и их пловинки равны
вывод: амс и сna равны по двум сторонам и углу между ними, занчит см=аn чтд
Ответ дал: Гость
сторона шестиуголника равна а=р/6=48/6=8 см
тогда радиус окружности r=a=8 см
радиус окружности - половина диагонали квадрата по теореме пифагора сторона квадрата равна а²=r²+r²
а=r√2=8√2 см
Ответ дал: Гость
треугольник cdh прямоугольный. угол cdh=30 градусов => что ch=1/2 cd.
пусть ch=x ,тогда cd=2х. ab -высота. сн=ав. ав+cd=36 получаем что cd+ch=36. значит x+2x=36. отсюда х=12. высота найдена. найдем боковую сторону: 36-ch. сd=36-12=24. тк треугольник cdh прямоуг. тогда dh найдем по теореме пифагора: dh^{2}=cd^{2}-ch^{2}. получаем dh^{2}=24^{2}-12^{2}=576-144=432. dh=12\sqrt{3}. найдем нижнее(оно же большее основание) 8\sqrt{3}+12\sqrt{3}=20\sqrt{3}. найдем площадь трапеции: s=1/2*ad*bc. s= 1/2*8\sqrt{3}*20\sqrt{3}=240.
ответ: площадь s=240, высота ab=12.
Ответ дал: Гость
abcd- равнобедрренная трапеция, bc=24 см и ad=40 см - основания трапеции, bd и ас - диагональ, вк - высота. по свойствам равнобедренной трапеции (если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований,) вк=(bc+ad)/2=(24+40)/2=32 см. тогда s=(bc+ad)/2*bk=(24+40)/2*32=1024 см^2.
Популярные вопросы