Сумма внутренних углов выпуклого многоугольника устанавливается по формуле: 180° * (n-2), где n – число вершин n-угольника. Сумма углов выпуклого многоугольника вычисляется довольно Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2). Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов: 180 х n. Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле: 180° * n-180°-(n-2)= 360°. Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон). Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.
Объяснение:
Спасибо
Ответ дал: Гость
δавс подобен δа₁в₁с₁
ав=21
вс=27
са=12
в₁с₁=54
а₁в₁/в₁с₁=7/9
а₁в₁=54*7/9=42
s/s₁=(ав*вс)/(а₁в₁*в₁с₁)=(21*27)/(54*42)=1/4
Ответ дал: Гость
нет.потому что напротив большего угла лежит большая сторона.а сторона вс лежит против угла в 40 гр.
Популярные вопросы