Для решения используем формулу m=(1/2)*sqrt(2b^2+2c^2-a^2) для нашего случая a=14, b=9 и c=7, тогда m=(1/2)*sqrt(2*81+2*49-196)=(1/2)*sqrt(64)=(1/2)*8=4
Ответ дал: Гость
рассмотрим треугольник со сторонами 13,14 и 15.,соответственно, угол алфа лежит против диагонали, по теореме косинусов его cos(alfa)=5/13,sin(alfa)=12/13следовательно, по формуле cos(alfa)=2*cos^2(alfa/2)-1cos(alfa/2)=3/sqrt(13)sin(alfa/2)=2/sqrt(13)sin(beta)=sin(alfa)=12/13cos(beta)=-5/13рассмотрим треугольник, отсекаемый биссектрисой с угламиalfa/2, beta и gamma при стороне 13.sin(180-gamma)=sin(gamma)=sin(alfa/2+beta)=sin(alfa/2)*cos(beta)+cos(alfa/2)*sin(beta)=2/sqrt(13)*(-5/13)+3/sqrt(13)*12/13=2/sqrt(13)значит угол gamma=alfa/2 и отсекаемый треугольник равнобедренный с двумя сторонами по 13.значит, его площадь равна: s=13*13*1/2*sin(beta)=6*13=78аналогично находится площадь другого треугольника.
Ответ дал: Гость
решение: пусть первый угол равен 4х, тогда второй угол равен 11х,
сумма смежных углов равна 180 градусов, поєтому
4х+11х=180
15х=180
х=180\15
х=12
4х=4*12=48
11х=11*12=132
значит один угол равен 48 градусов, второй равен 132 градуса,
Популярные вопросы