треугольники aod и boc - подобные, так как углы boc и aod - равны как вертикальные, bc||ad - по условию и два остальных угла bco и oad, cbo и oda треугольников тоже равны, как лежащие между параллельными сторонами и получаем подобие треугольников за равными тремя углами.
площади подобных треугольников относятся как квадраты их линейных размеров, то есть
saod/sboc=(ad)^2/(bc)^2
32/8=100/(bc)^2
(bc)^2=8*100/32=25
bc=5
Ответ дал: Гость
треугольники abo, bco, cdo, dao равны по площади в силу фактов (диагонали паралелограмма делятся в точке пересечения пополам,
синусы смежных углов равны
площадь равна половине произведению сторон треугольника на синус угла между ними
соотвествующие вычислению площадей треугольников параметры равны, значит равны и сам площади)
так как площади равны, то площадь паралелограмма больше в 4 раза любого из этих треугольников,
Популярные вопросы