обходим треуг. и выписываем равенства х+у=12, у+z=9, z+х=6 ,где х,у,z- искомые отрезки (они попарно равны по свойству отрезков двух касательных, проведенных к окружности из одной точки сложим почленно 2(х+у+z)=27, x+y+z=13,5 , но т.к. х+у=12 , то 12+z=13,5 и z=1,5. аналогично х+9=13,5,
х=4,5 . 6+у=13,5 и у= 7,5.
Ответ дал: Гость
вектор a перпендикулярен вектору b, когда их скалярное произведение равно нулю.
a*b = 2*1 + (-1)*3 + 3*n = 0;
2 - 3 + 3*n = 0;
-1 + 3*n = 0;
3*n = 1;
n = 1/3.
Ответ дал: Гость
abcd- равнобедрренная трапеция, bc и ad - основания трапеции, bd=10м - диагональ, вк - высота, угол bdk=60 градусов. рассм треугольник bkd - прямоугольн.т.к. bk перпендикулярно ad. sinbdk=bk/bd, bk=sin60*bd=(корень из 3)/2*10=5 корней из 3. по т. пифагора bd^2=bk^+kd^2, kd^2=bd^-bk^, kd^=100-75=25. kd=5. по свойствам равнобедренной трапеции (высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой - полуразности оснований.) kd=(bc+ad)/2=5. тогда s=(bc+ad)/2*bk=5*5корней из 3=25 корней из3.
Популярные вопросы