Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
а-длина, в-ширина
периметр р=2(а+в)
площадь s=а*в
решаем систему:
2(а+в)=96
ав=540
а+в=48
а=48-в
(48-в)в=540
48в-в^2=540
в^2-48в+540=0
d=(-48)^2-4*1*540=144=12^2
в1=(48+12)/2=30 (дм) в2=(48-12)/2=18 (дм)
а1=48-в1=48-30=18 (дм) а2=48-в2=48-18=30 (дм)
ответ: стороны прямоугольника равны 18дм и 30 дм.
наверное имелось ввиду на расстоянии 9 см
решение: объем шарового сегмента равен v=1\3*pi*h^2*(3*r-h)
где h – высота шарового сегмента
r - радиус шара
радиус окружности сечения равен r=c\(2*pi)=24*pi\(2*pi)=12 cм=
радиус шара равен по теореме пифагора
r^2=r^2+d^2
r^2=9^2+12^2=15^2
r=15
h=r-d=15-9=6
объем шарового сегмента равен
v=1\3*pi*6^2*(3*15-6)=468*pi или
468*3.14=1 469.52 см^3
пусть точка d лежит на отрезке ав, точка е на отрезке ас, а точка f на отрезке вс.
пусть ad = ae = x , bd = bf = y , ce = cf = z (касательные, проведенные из одной точки, имеют одинаковую длину). тогда получаем систему уравнений
x + y = c
x + z = b
y + z = a
сложив эти уравнения, получаем x + y + z = (a + b + c)/2
вычитая из этого соотношения исходные уравнения, получаем
x = (b + c - a)/2
y = (a - b + c)/2
z = (a + b - c)/2
Популярные вопросы