так - как в правильном треугольнике пересечение биссектрис, медиан и высот является центром окружности, можно найти её радиус. радиус: сos (30°) = (√3)/2=3/r , следовательно r=6/√3.
r – радиус описанной окружности вокруг правильного треугольника.
площадь окружности: s= πr2= π (6/√3 )2 = π*36/3=12π
ответ : 12π
Ответ дал: Гость
радиус вписанной окружности в многоугольник определяется по формуле
r=a/(2*tg(360°/2*n))
или сторона равна
a=2r*tg(360°/2*n)
для правильного треугольника
a=2rtg60°=2r*sqrt(3)
и периметр p1=6r*sqrt(3)
для правильного шестиугольника
a=2rtg30°=2r*/sqrt(3)
и периметр p2=12r/sqrt(3)
отношение
p1/p2=6r*sqrt(3): 12r/sqrt(3) = 3/2
Ответ дал: Гость
угол авс=углу адс=90 град (как углы, опирающиеся на диаметр ас)
о - центр окружности.
треугольник аво = треугольнику аод - равносторонние, каждая сторона равна радиусу. значит, все их внутренние углы равны по 60 град.
тогда, уголвад=120 град, а угол всд= 180-120=60 град.
дуга ав = углу аов = 60 град
дуга ад = углу аод = 60 град
дуга сд = углу сод = 180-60=120 град (как смежные)
дуга вс = углу вос = 180-60=120 град (как смежные)
Популярные вопросы