у ромба диагонали перпендикулярные и в точке пересечения делятся пополам
пусть диагонали ромба равны a и b соответственно, тогда если точка о- точка пересечения диагоналей, то если рассматривать прямоугольный треугольник aob, то ao=a/2 и ob=b/2, а площадь треугольника aob=ab/4.
поскольку у ромба 4 таких треугольника , то его площадь равна 4*ab/4=ab, что следовало и доказать
т.к. треугольник равносторонний, то все углы в нем равны 60 градусов. значит, биссектриса является и высотой одновременно. угол ll1m равен 30 градусам.
а катет, лежащий против угла в 30 градусов, равен половине гипотенузы.
==> расстояние от точки l до стороны mn равно отрезку ll1 = 7*2 = 14
Ответ дал: Гость
1. опустим две высоты на большее основание трапеции. получим два прямоугольных треугольника, в которых известна гипотенуза (боковая сторона трапеции 6 см) и острый угол альфа. высота трапеции равна . часть большего основания . тогда, периметр равен . площадь равна
2. медианы треугольнике пересекаються и точкой пересечения деляться в отношении 2: 1, начиная от вершины треугольника. пусть медиана из вершины в треугольника авс пересекает сторону ас в точке к. тогда по свойству медиан ок=5 см. вк = 15 см. рассмотрим треугольник вск. он прямоугольный (угол с = 90 градусов). из теоремы пифагора
кс= 9 см. так как вк медиана , то ак=кс=9 см. ас=18 см.
Популярные вопросы