площадь ромба равна половине произведения диагоналей.
пусть одна диагональ равна 2х, другая равна 2у. в ромбе они перпендикулярны. значит из пр. тр-ка, составляющего четверть ромба по теореме пифагора имеем:
x^2 + y^2 = 15^2 = 225 (1)
сумма диагоналей ромба: 2(х+у) = 42 или х+у = 21
возведем в квадрат: x^2 + 2xy + y^2 = 441 (2) подставим (1) в (2):
ху = (441-225)/2 = 108
площадь ромба:
s = d1*d2 /2 = (2x)*(2y) /2 = 2xy = 216
ответ: 216 см^2.
Ответ дал: Гость
поскольку у двух образованных треугольников общая высота, то проекции катетов на гипотенузу относятся как 54 : 6 = 9 : 1 и, следовательно, сами катеты относятся как 3 : 1 (отношение проекций катетов на гипотенузу равно квадрату отношений длин самих катетов).
пусть длина одного катета х, тогда длина второго катета 3 * х.
по формуле площади х * 3 * х / 2 = 1,5 * x² = 54 + 6 = 60
тогда х² = 40 , а х = √40 = 2 * √10 см. тогда длина второго катета
Популярные вопросы