пусть медиана пересекает сторону ва в точке о. рассмотрим треугольник аос ар в нём биссектриса . точка р это точка пересечения биссектрисы тупого угла и медианы со. биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам ао=3,5ас=9 тогда рс: ор= ас: ао ср: ао= 9: 3,5=90: 35=18: 7
Ответ дал: Гость
пусть ав = h, проведем еще высоту ск = h. тогда из пр. тр-ка cdk:
сd = 2h/кор3, dk = h/кор3. ak = bc = 8 - (h/кор3).
если в трапецию можно вписать окр-ть, то суммы противоп. сторон равны.
ad+bc = ab + cd или:
8 + 8 - (h/кор3) = h + (2h/кор3). найдем h:
h = (16кор3) / (3 + кор3). теперь распишем площадь:
s = (a+b)*h/2 = (8+8-(16/(3+кор3)) * (8кор3)/(3+кор3)
h = 128(3+2кор3) / (3+кор3)^2 = 128(3+2кор3) / 6(2+кор3). домножим и числитель и знаменатель на (2-кор3).
Популярные вопросы