центр шара совпадает с центром куба наибольшего объема. построим сечение проходящее через, центр шара, получим квадрат вписанный в окружность. сторона квадарата равна r√2=6√2 см
объем шара а=4/3πr³=4/3*π*6³=286π=898,04 см^3
объем куба а³=432√2
отход равен разности объемов шара и куба
286π-432√2 см³ = 287,1 см^3
процент отхода равен объем отхода к обьъему шара
287,1*100%/898,04=32%
Ответ дал: Гость
по расширенной тееореме синусов
a\sin a=b\sin b=c\sin c=2*r
a=2*r*sin a
a=60 градусов
а=2*10*sin 60=10*корень(3)
сумма углов треугольника равна 180 градусов
третий угол равен c=180-60-15=105
площадь треугольника равна половине произведения сторон на синус угла между ними
s=1\2*a*b*sin c=1\2a*2r*sin b*sin c=a*r*sin b*sin c
s=10*корень(3)*10*sin 15*sin 105=
=50*корень(3)*sin 30=25*корень(3)
(воспользовались тригонометричискими формулами и двойного угла
Популярные вопросы