a_1,\ a_1+d,\ a_1+2d,\ \ldots,\ a_1+(n-1)d, \ \ldots так что ~n-й член арифметической прогрессии равен ~{a_n}={a_1}+{ \left( n-1 \right) }d более точно: последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d (шага или разности прогрессии). иначе говоря, для всех элементов прогрессии, начиная со второго, выполнено равенство: a_n=a_{n-1} + d \quad любой член прогрессии может быть вычислен по формуле: a_n=a_1 + (n-1)d \quad \forall n \ge 1 (формула общего члена) шаг прогрессии может быть вычислен по формуле: d=\frac{a_n-a_m}{n-m}, если n\neq m если шаг d > 0, прогрессия является возрастающей; если d < 0, — убывающей.
Ответ дал: Гость
1)(6ху+8у)-2ху-8у+1=6ху+8у-2ху-8у+1
2)5с+15-с^[2]-3с-3с+3с^[2]=2c+2c^[2]-6c+15
3)5b^[2]-5bc+2bc-c^[2]=5b^[2]-c^[2]-3bc
Ответ дал: Гость
нехай власна швидкість човна х км/год, тоді швидкіст за течією (х+2) км/год, а швидкість проти теячії (х-2) км/год. тоді час за течією 8/(х+2) год, а час апроти течії 6/(х-2) км /год. за умовою вес час 1 година. складаємо рівняння: 8/(х+2)+ 6/(х-2) =1
Популярные вопросы