Это произведение оканчивается 18-ю нулями.
Объяснение:
Количество нулей в конце произведения можно найти и не вычисляя полностью само произведение, а следуя по такому алгоритму:
1) разложить каждый множитель произведения на простые множители
2) если нужно- упростить выражение (каждый простой множитель должен быть записан один раз, в виде степени с соответствующим показателем
3) у простых множителей 2 и 5 смотрим их показатели степеней - меньшее из этих двух чисел и будет равно числу нулей, на которое будет оканчиваться всё произведение
4) если нет хотя бы одного из этих множителей- двойки или пятёрки или обоих вместе- значит не будет и нулей в конце произведения (можно считать, что показатель степени отсутствующего множителя равен нулю, а значит (смотри пункт 3) не будет и нулей в конце произведения)
А лучше записать нахождение числа нулей виде вот такого преобразования произведения (в конце становится понятен выше описанный алгоритм нахождения числа нулей):

На этом преобразования можно закончить, само произведение думаю писать не обязательно в виде единого числа, т.к. количество нулей в его конце ясно видно в показателе степени десятки.
Ну если уж хочется, то можно и написать его в конце преобразований:
= 24 000 000 000 000 000 000
Популярные вопросы