Найдем точки пересечения графика функции у=9-x^2 с осью ох, 9-х²=0, х=±3. так как это парабола и она симметрична относительно начала координат, то достаточна найти интеграл (9-x^2) пределы интегрирования от 0 до 3, и полученный ответ умножить на 2. ₀³∫(9-х²)dх=9х-х³/3, подставим пределы интегрирования, сначала 3 потом 0, получим (9*3-3³/*0-0³/3)=3. тогда площадь фигуры равна 3*2=6 кв.ед.
Ответ дал: Гость
пусть гипотенуза равна x, тогда катеты равны (x-32) и (x-9).
тогда
(x-32)^2+(x-9)^2=x^2
x^2-64x+ 1024+x^2-18x+81=x^2
x^2- 82x+1105=0
решая это уравнение, получаем корни x=17 и x=65.
корень x=17 - побочный, так как длина катетов будет отрицательна
Популярные вопросы