Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
заготовка уменьшилась на 49%
полная запись решения f'(x)=(1'*)'*1))/(12x^4)^2-(5'*18x^3-(18x^3)'*5)/(18x^3)^2-(1'*4x^2-(4x^2)'*1)/(4x^2)^2+2'
const'=0 x'=1 (x^n)' =nx^(n-1) (u/v)'=(u'v-v'u)/v^2
ответ: f'(x)=-48x^3/144x^8+270x^2/424x^6+8x/16x^4
f'(x^=-1/3x^5+135/212x^4+1/2x^3
f'(x)=-0,3055556x^5+0,6367925x^4+0,5x^3
пусть х - скорость течения.
3,5(30+х)=4(30-х)
105+3,5х=120-4х
7,5х=15
х=2
2 км/ч - скорость течения
3,5(30+2)=112 (км) - прошёл катера по течению.
можно решить эту двумя способами:
1 способ.
x^2-6x+34 - парабола, оси которой направлены вверх, т.к. коэффициент при
x^2 равен 1> 0, следовательно наименьшим численным значением
этой параболы является ордината её вершины.
найдём координаты вершины параболы:
х(в)=6/2=3,
у(в)=3^2-6*3+34=9-18+34=-9+34=25 - наименьшее значение
2 способ - с производной
у(х)=х^2-6х+34
y`(x)=2x-6
y`(x)=0 при 2х-6=0
2х=6
х=3
у(3)=3^2-6*3+34=9-18+34=-9+34=25 - наименьшее значение
Популярные вопросы