преобразуем уравнение sin x = 2 cos x . рассмотрим те x, для которых cos x = 0 (x = π/2 + πn, n принадлежит z). для этих x sin x = ±1. подставим cos x = 0 и sin x = ±1 в исходное уравнение. получаем ±1=0.(неверное числовое равенство). следовательно, эти x не являются корнями исходного уравнения. значит, cos x ≠ 0. разделим обе части уравнения на cos x ≠ 0, имеем tg x = 2, x = arctg 2 + π n , n принадлежит z.
2. 2sin x-cos x =0
преобразуем уравнение 2sin x = cos x .
tg x = 1/2, x = arctg 1/2 + π n , n принадлежит z.
3. 2sin x-3 cos x=0
преобразуем уравнение 2sin x = 3cos x .
tg x = 3/2, x = arctg 3/2 + π n , n принадлежит z.
Ответ дал: Гость
решение: по теореме виета
x1+x2=)=4
x1*x2=(2-k)(2+k)
так как 2-k+2+k=4, то х1=2-k, х2=2+k
если k> 0 то меньший корень уравнения равен 2-k, больший корень равен 2+k
k> 0
2-k< 0< 2+k,
k> 0
k> 2
k> -2,
k> 2
если k< 0 то меньший корень уравнения равен 2+k, больший корень равен 2-k
k< 0
2+k< 0< 2-k,
k< 0
k< -2
k< 2,
k< -2
следовательно 0 находится между корнями уравнении, когда k> 2
Популярные вопросы