так - как в правильном треугольнике пересечение биссектрис, медиан и высот является центром окружности, можно найти её радиус. радиус: сos (30°) = (√3)/2=3/r , следовательно r=6/√3.
r – радиус описанной окружности вокруг правильного треугольника.
площадь окружности: s= πr2= π (6/√3 )2 = π*36/3=12π
ответ : 12π
Ответ дал: Гость
воспользуемся теоремой: отрезки касательных, проведённых из одной точки равны. таким образом, у нас получается пара равных отрезков у вершины (5 и 5) и у 2 пары равных отрезков у основания (3 и 3). получаем:
Популярные вопросы