доказать что в равнобедренном треугольнике авс медианы аn и сm к боковым равны между собой.
для этого докажем что треугольники амс и сna равны между собой,
1) угол а равен углу с по условию тк это равнобедр треуг
2) ас - общая
3) ам= аn тк, ав=вс, см и an медианы делящие стороны пополам следовательно и их пловинки равны
вывод: амс и сna равны по двум сторонам и углу между ними, занчит см=аn чтд
Ответ дал: Гость
по формуле герона s^2=(p*(p-a)*(p-b)*(p- p=1/2*(a+b+c) вычислить площадь треугольника, который получается из сторон с известными длинами.
s=1/2*основание*h из этой формулы вычислить h. эта h также является высотой трапеции. провести высоту и в маленьком треугольнике, сторонами которого являются высота трапеции и её боковая сторона, по теореме пифагора найти неизвестную сторону. с^2=b^2+a^2.b=корень квадратный из с^2-a^2.меньшее основание равно большее основание минус 2 стороны, которые мы только что искали. подставляем в формулу s=(a+b)/2*h и получаем s=135
Ответ дал: Гость
по теореме пифагора:
площадь прямоугольного треугольника равна половине произведения катетов
Популярные вопросы