сначала найдем периметр основания. 5+12+13=30см. апофемой в данной пирамиде будет являться ребро, перепендикулярное плоскости основания, которое задано нам по условию.
найдем площадь основания. так как по условию в основании прямоугольный треугольник, мы можем найти его площадь по формуле sосн=1/2bc, где b и c - катеты прямоугольного треугольника
sосн=1/2*5*12=30 см^2
площадь боковой поверхности пирамиды равна половине произведения периметра основания и апофемы: sб=1/2p*l
sб=1/2*30*9=135 см^2/
площадь полной поверхности пирамиды равна сумме площади основания и площади боковой поверхности пирамиды
sп=sосн+sб
sп=30+135=165 см^2
ответ: 165 см^2
Ответ дал: Гость
пусть основание параллелепипеда abcd
используя формулу
d1^2+d2^2=2(a^2+b^2)
находим вторую диагональ основания (первая =3,2 по условию )
(3,2)^2+d2^2=2*(5^2+8^2)
10,24+d2^2=178
d2^2=167,76 - это меньшая диагональ основания
найдем высоту параллелепипеда
h^2=(ac1)^2-(ac)^, где ac1- большая диагональ параллелепипеда
h^2=(13)^2-(3,2)^2
h^2=169-10,24=158,76
вторая диагональ параллелепипеда равна
(db1)^2=h^2+(d2)^2
(db1)^2=158,76+167,76=326,52
db1=sqrt(326,52)
Ответ дал: Гость
попробуем - хорда окружности, перпендикулярная ао, м - их точка пересечения. тк ао - радиус, м - середина вd , т.е. тр-к abd равнобедренный, значит углы abd и bca равны. отсюда равны дуги ad и ab, а след и углы bca и abd. нетрудно док-ть что углы cbd и oah равны (если угол в острый, то через верт. углы, если тупой то через общий угол вса). получаем, что уг оан = уг cbd = уг авс - уг abd = уг авс - уг вса, чтд.
Популярные вопросы