Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
хорда, стягтвающая дугу в 90 градусов, образует равнобедренный прямоугольный треугольник. поэтому хорда является гипотенузой в этом треугольнике. по теореме пифагора с в квадрате=корень кваратный из а в квадрате + в в квадрате. в данной а и в - это радиусы окружности, а с - это хорда. поэтому r= корень квадратный из хорды в квадрате/2=
r= корень квадратный из 288/2 =12(см0
Ответ дал: Гость
отметь как "лучший" ответ
так как угол adc равен 30, и ad( гипотенуза) равна 6 см, то есть правило: катет,лежащий против угла в 30 градусов равен половине гипотенузы,след-но: ответ: 3 см
Популярные вопросы