т.к. авсд - ромб, то у него все стороны равны, диагонали пересекаются под прямым углом и в точке пересечения делятся по-полам. ао=ос; во=од=3см (6/2).
прямая ок перпендикулярна плоскости, значит и перпендикулярна всем прямым на этой плоскости. ок перпендикулярна прямым вд и ас.
рассмотрим треугольник аов - прямоугольный. по теореме пифагора
ао= sqrt(ав^2- во^2)=sqrt(25-9)=4см
опускаем наклонные из точки к к прямым ао и во.
из треугольника аок- прямоугольного по теореме пифагора ак=sqrt(64+16)=sqrt(80)= 4sqrt(5)/
из треугольника вко - прямоугольного, вк= sqrt(64+9)=sqrt(73) см
ответ: sqrt(80); sqrt(73).
Ответ дал: Гость
если из точки, с которой проведены перпендикуляры к сторонам многоугольника провести еще и прямые соединяющие концы сторон многоугольника, то мы получим n-теугольников. площадь одного такого треугольника равна
(1/2)*l*a, где l – перпендикуляр к стороне многоугольника, а а-сторона многоугольника.
сложив площади всех треугольников, мы получим площадь многоугольника s=(n/2)*(l1+l2+… +ln)*a
с другой стороны, площадь многоугольника вписанного в окружность равна
Популярные вопросы