из точки а перпендикулярно на плоскость проводим линию. пересечение проведённой линии и линии плоскости будет точка d. получаем 2 прямоугольных треугольника с общей стороной ad. первый треугольник с катетами bd и ad. сторона bd равна 12 см., согласно . второй треугольник acd, где ac его гипотенуза. по нам нужно найти длинну стороны dc. сумма квадратов катетов равна квадрату гипотенузы.
решение: ab^2=ad^2+bd^2
ac^2=ad^2+dc^2
dc^2=ac^2-ad^2=ac^2-ab^2+bd^2
dc^2=36-169+144=11
dc= квадратный корень из 11( если условие записано правильно)
Ответ дал: Гость
пусть abcd - данный треугольник тогда ad=10
угол abd=30 градусов
ab=ad*cos 30=10*корень(3)\2=5*корень(3)
по теореме пифагора bc=корень(bd^2-ab^2)=корень(10^2-(5*корень(3))^2)=
=5
s=ab*bc=5*корень(3)*5=25*корень(3)
Ответ дал: Гость
пусть abc - равносторонний треугольник
al,ck,bn - биссектрисы, медиана и высоты
al^2 = ab*ac - bl*lc
ck^2 = cb*ac - ak*kb
bn^2 = ab*bc - an*nc
ab = bc = ac (т.к треугольник abc - равносторонний)
ak = kb = bl = lc = cn = na (т.к. ab = bc = ac, а al,ck,bn - медианы)
Популярные вопросы