из точки а перпендикулярно на плоскость проводим линию. пересечение проведённой линии и линии плоскости будет точка d. получаем 2 прямоугольных треугольника с общей стороной ad. первый треугольник с катетами bd и ad. сторона bd равна 12 см., согласно . второй треугольник acd, где ac его гипотенуза. по нам нужно найти длинну стороны dc. сумма квадратов катетов равна квадрату гипотенузы.
решение: ab^2=ad^2+bd^2
ac^2=ad^2+dc^2
dc^2=ac^2-ad^2=ac^2-ab^2+bd^2
dc^2=36-169+144=11
dc= квадратный корень из 11( если условие записано правильно)
Ответ дал: Гость
12 : 4 = 3 -коэффициент подобия
17 х 3 = 51 -(т.к. 17: 51 как 4: 12)
Ответ дал: Гость
1)так как диагонали ромба точкой пересечения деляться пополам, то(рассматривая маленький треугольник-четверть ромба) один катет=8(16: 2), а другой катет=15(30: 2). по теореме пифагора:
3)так как мы знаем что в равнобедренном треугольнике высота являеться медианой, отрезки ан=сн=8см
по теореме пифагора:
36+64=100
вс=ав=10см
Ответ дал: Гость
пусть авсd-равнобокая трапеция. проведём через вершину в прямую, параллельную стороне аd. она пересечёт луч dc в некоторой точке е. четырёхугольник авеd-параллелограмм. по свойству параллелограмма ве=аd. по условию ad=bc (трапеция равнобокая), значит, треугольник все равнобедренный с основанием ес.углы треугольника и трапеции при вершине с , а унлы при вершинах e и d равны как соответственные углы при пересечении параллельных прямых секущей.поэтому угол аdc= углу bcd.ч.т.д.
Популярные вопросы