треугольник рмк не равнобедренный, и углы при его основании не равны 30° высоту мн этого треугольника можно найти из его площади. площадь треугольника равна половине произведения его сторон на синус угла, заключенного между ними. s = 1/2 рм* mn * sin(120) s = 1/2 3*4* √3/2= 3√3 но площадь треугольника равна и половине произведения его высоты на сторону, к которой она проведена. s=ah: 2 мн проведена к рк. рк найдем по теореме косинусов: pk² = 3² + 4² - 2*3*4*cos(120°) = 9 + 16 -24(-1/2)=37 pk=√37 мн=2 s : 37= (6√3): √37 или мн=10,3923: 6,0827 ≈1,7 см
Спасибо
Ответ дал: Гость
1) пусть одна часть будет x см, тогда
3х+4х+11х=180 (т.к. сумма всех углов в треугольнике)
18х=180
х=10 - одна часть
угол а = 30 градусов
угол в = 40 градусов
угол с = 110 градусов.
2) опустим высоту сн
3) рассмотрим треугольник асн. в нём один угол равен 30 градусов, тогда по тригонометрии сн=0,5ас=4(см)
4) площадь треугольника = 0,5*4*5=10(см квадратных)
Популярные вопросы