Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*ав*вс=6). высота призмы равна высоте пирамиды в1авс, в которой боковые ребра равны, (то есть вв1=ав1=св1). если все боковые ребра пирамиды равны между собой, то вершина пирамиды в1 проецируется в центр описанной около основания окружности. центр описанной около прямоугольного треугольника окружности лежит на середине ас гипотенузы, радиус этой окружности равен половине гипотенузы. аа1с1с- квадрат, поэтому сс1=ас. вв1с1с - параллелограмм (боковая грань призмы), поэтому вв1=сс1=ас. по пифагору гипотенуза ас=√(ав²+вс²)=√(144+1)=√145. тогда радиус описанной окружности вн=(√145)/2. из прямоугольного треугольника внв1 найдем по пифагору в1н=√(в1в²-вн²)=√(145-145/4)=√435/2. тогда объем призмы равен sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Ответ дал: Гость
s=a*h=bc*df
df=db=8 см т.к. угол adb = углу dbc = 90 градусов
отсюда s= 8*4= 32 см^2
ответ: площадь параллелограмма abcd = 32 см^2
Ответ дал: Гость
s=πr²=πd²/4
s₅₀=π50²/4=π*625 площадь одной трубы
3* π*625=1875π площадь трех труб d=50
1875π=πd²/4
d²=7500
d=50√3 диаметр новой трубы
Ответ дал: Гость
1) тр-ки нрв и рсв имеют общую высоту вк, плущенную из тоски в на сн, тогда s ( рсв) / s(нрв) = 0,5 hp*bk / 0,5 pc*bk = 18/ 24 или нр/ рс = 18/24 = 3/4 2) тр-ки врн и срд подобны с коэффициентом подобия 3/4. отношение площадей подобных тр-ков равно квадрату коэффициента подобия, тогда 18/ s( срд) = 9/16 отсюда s( срд) = 32 3) s( всд) = 24+32 =56 4) s(авсд) = 2s( всд) = 56*2 = 112 ответ 112
Популярные вопросы