площадь ромба равна половине произведения его диагоналей, то есть
s=(1,2)*d1*d2=48
d1*d2=96
четырехугольник, вершинами которого есть середины ромба - это прямоугольник, его стороны равны половине соответствующих диагоналей,
то есть его площадь равна
(d1/2)*(d2/2)
то есть
(d1*d2)/4=96/4=24
Ответ дал: Гость
диагонали паралелограмма в точке пересечения делятся пополам, поэтому
bo=co
обозначим угол boc через а, тогда смежный угол cod равен 180 градусов - а
площадь треугольника равна половине произведения двух сторон треугольника на синус угла между ними
поэтому площадь треугольника boc равна 1\2*bo*oc*sin a
площадь треугольника boc равна 1\2*do*oc*sin (180 - a)
по формуле sin(180- a)=sin a, отсюда
указаннанные треугольники имеют равную площадь
Ответ дал: Гость
cd=ab как диаметры.
ad-общая сторона.
ac=bd, поскольку треугольник аос равен треугольнику bod по первому признаку равности треугольников, где о - центр окружности. дейтвительно, ао=od, oc=ob как радиусы, угол аос равен углу bod как вертикальные.
треугольники равны по третьему признаку равности треугольников
Популярные вопросы