сечение шара плоскостью треугольника окружность, описанная вокруг треугольника, т к на поверхности шара даны три точки а, в, с.
центр описанной окружности - лежит в середине гипотенузы
значит радиус r=ac/2=17/2
на расстоянии от верхней точки шара до плоскости радиус равен 17/2
тогда (r-√35/2)/8,5=r/r
r=8,5+√35/2
объем шара v=4πr³/3=4π(8,5+√35/2)³/2=3008,6π см³
Ответ дал: Гость
кд=9 высота на пл. альфа
км=кд/sin30=9/0.5=18
kl=кд/sin45=9/(1/√2)=9√2
lm²=km²+kl²=324+162=486
lm=9√6
Ответ дал: Гость
в основании правильной треугольной пирамиды лежит равносторонний треугольник с длинами сторон 6 см.
площадь боковой поверхности = сумме площадей боковых граней.
площадь боковой грани треугольной пирамиды = площади треугольника, а т.к. нам известны все стороны треугольника то его площадь можно вычислить по формуле герона: s= √p(p-a)(p-b)(p-c), где р - полупериметр.
р = (6 + 5 + 5)/2 = 8
s=√8(8-6)(8-5)(8-5)=√8 * 2 * 3 * 3 = 12 см² - площадь одной боковой грани
т.к. все грани одинаковые, то получим:
s бок. пов. = 3 * 12 = 36 см²
ответ. 36 см²
Ответ дал: Гость
пускай высота у нас будет х, тогда сторона, нак которую высота опирается - 2х
(буквы вы сами раставите когда треугольник нарисуете)
Популярные вопросы