Дан треугольник авс с гипотенузой вс=3, катетами ав=√3 и ас=√6; опустим перпендикуляр ак к этой гипотенузе, тогда отрезки вк и кс будут проекциями катетов ав и ас на гип. вс. найдем ак: для этого рассмотрим два прямоугольных треугольника авс и акс. запишем выражения для синусов угла асв sinacb= ak/√6 для треугольника акс sinacb= √3/√3 для треугольника авс приравняем правые части и найдем ак=√18/3=√по теореме пифагора найдем вк вк^2=ab^2-ak^2=(√3)^2-(√2)^2=1 bk=1 kc=3-1=2
Ответ дал: Гость
Пирамида правильная, значит в основании квадрат и боковые ребра равны между собой и равны l. высота проецируется в центр основания - точку пересечения диагоналей квадрата - о. so - высота пирамиды, ∠csd = α - плоский угол при вершине. если конус вписан в пирамиду, то его высота совпадает с высотой пирамиды, а основание - круг, вписанный в основание пирамиды. δcsd: по теореме косинусов cd² = cs² + ds² - 2cs·ds·cosα = l² + l² - 2·l·l·cosα = 2l²·(1 - cosα) cd = l√(2(1 - cosα)) радиус круга, вписанного в квадрат, равен половине стороны квадрата: r = cd/2 = l√(2(1 - cosα)) / 2 - радиус основания конуса. co = ac/2 = cd√2/2 = 2l√(1 - cosα)/4 = l√(1 - cosα) из треугольника cos по теореме пифагора so = √(sc² - oc²) = √(l² - l²(1 - cosα)) = l√cosα vц = 1/3 · πr² · so = 1/3 · π ·l²(2(1 - cosα))/4 · l√cosα = πl³ (1 - cosα)√cosα/6 воспользуемся формулой синуса половинного угла: 2sin²(α/2) = 1 - cosα: vц = πl³sin²(α/2)√cosα / 3
Ответ дал: Гость
из вершины b трапеции опустим высоту bk на dc, тогда угол kbc равен углу abc - 90 градусов, то есть угол kbc=60 градусов
1)так как диагонали ромба точкой пересечения деляться пополам, то(рассматривая маленький треугольник-четверть ромба) один катет=8(16: 2), а другой катет=15(30: 2). по теореме пифагора:
Популярные вопросы