Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
площадь боковой поверхности равна площади одной грани умноженной на 4.
боковая грань - это треугольник его площадь равна 1/2*апофему*сторону основания, т.е.s=1/2*20*8=80 (см кв)
4s=4*80=360 (см кв)
так как вопрос о площади в условии не нашел отражения, найдем все возможные площади.
sосн = (а кв*кор3)/4, где а - сторона основания.
sосн = 9кор3 см^2.
далее sбок = 3*sбок.грани = 3*4*6 = 72 см^2.
sполн = s бок + 2sосн = 72 + 18кор3.
на всякий случай найдем объем:
v = sосн*h = (9кор3)*4 = 36кор3.
1) рассмотрим треугольник авм. он равнобедренный, значит, его углы при основании равны. угол вам равен углу вма.
2) угол равен углу вма как внутренние разносторонние при парал. вм и ад и секущей ам.
3) из 1 и 2 пунктов следует, что угол вам равен углу . следовательно, ам-биссектриса угла вад, что и требовалось доказать.
ав=вм=сд=8 см
вс=вм+мс=8+4=12 (см)
ад=вс=12 см
р=2(12+8)=40 (см)
ответ. 40 см
р=2(а+в), пусть а=х, тогда
30=2(х+4х)
5х=30/2
х=15/5
х=3м одна сторона
4*3=12м вторая сторона
Популярные вопросы