доказательство. пряма bd проходит содержит диагональ ромба.
диагонали ромба пересекаются и в точке пересечения – точке о делятся пополам.
диагонали ромба пересекаются под прямым углом.
поэтому расстояние ao=r=oc, и ao перпендикулярно вд, значит bd будет касательной к окружности с центром в точке а и радиусом равным ос с точкой касания о.. доказано.
Ответ дал: Гость
r=а6=48: 6=8 см - радиус описанной окружности
r=r*cos(180/n)=8*cos30=4√3 см - радиус вписанной окружности
s=0.5pr=0.5*48*4√3=96√3 см кв - площадь шестиугольника
Популярные вопросы