Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
пусть треугольник авс,: ав=ас
угол вас=120
тогда угол авс =30
высота ср проведена до стороны ав
δврс:
угол р=90
угол в=30
рс-9см
кетет что лежит напротив угла 30 градуса равен полавине гипотенузы
вс=2рс=18см
площадь основания равна произведения квадрата стороны на синус угла между сторонами ромба
площадь ромба равна a^2*sin 60=a^2*корень(3)\2
высота ромба равна площадь ромба\сторону
высота ромба равна a^2*корень(3)\2: а=a*корень(3)\2
пусть ak - высота ромба
пусть ak1- высота ad1c1
тогда kk1 - высота параллелепипеда и угол kak1=60 градусов
kk1\ak= tg kak1=корень(3)
высота параллелепипеда равна kk1=ak*корень(3)=
a*корень(3)\2*корень(3)=а*3\2
площадь боковой поверхности 4*ab*kk1=
4*a*а*3\2=6a^2
площадь поверхности =2* площадь основания + площадь боковой поверхности
2*a^2*корень(3)\2+6a^2=(корень(3)+6)* a^2
ответ: a*корень(3)\2
а*3\2
6a^2
a^2*(корень(3)+6)
s = πr²α/360s= π * 12² * 120/360 = 144π/3 = 48πответ. 48π
рассмотрим основание призмы - треугольник abc, в нем ab=5, ac=3,угол bac=120°, тогда за теоремой косинусов находим третью сторону треугольника
(bc)^2=(ab)^2+(ac)^2 - 2*ac*bc*cos(120°)
(bc)^2=25+9+15=49 => bc=7
отсюда следует что сторона вс в призме создает наибольшую площадь боковой грани, то есть
sбок.гр=bc*h => h=35/7=5
найдем площадь основания призмы
sосн=ab*ac*sin(120°)/2 => sосн=5*3*sqrt(3)/(2*2)=15sqrt(3)/4
далее находим объем призмы
v=sосн*h =15sqrt(3)/4 * 5=75sqrt(3)/4
Популярные вопросы