1. опустим две высоты на большее основание трапеции. получим два прямоугольных треугольника, в которых известна гипотенуза (боковая сторона трапеции 6 см) и острый угол альфа. высота трапеции равна . часть большего основания . тогда, периметр равен . площадь равна
2. медианы треугольнике пересекаються и точкой пересечения деляться в отношении 2: 1, начиная от вершины треугольника. пусть медиана из вершины в треугольника авс пересекает сторону ас в точке к. тогда по свойству медиан ок=5 см. вк = 15 см. рассмотрим треугольник вск. он прямоугольный (угол с = 90 градусов). из теоремы пифагора
кс= 9 см. так как вк медиана , то ак=кс=9 см. ас=18 см.
по теореме пифагора cv
3. точка о где расположена?
Ответ дал: Гость
1)проведем в трапеции abcd высоту ch.
2)mbcd - параллелограмм, т. к. bc параллельно ad(основания трапеции),
а cd параллельно bm(по условию).
3)площадь параллелограмма bmcd = 35(по условию)
s=bc*ch
7*ch=35
ch=35/7=5
4)находим пощадь трапеции abcd:
s(abcd)=1/2*(ad+bc)*ch=1/2*(11+7)*5=45(cm^2)
ответ: 45см^2.
Ответ дал: Гость
По свойству медианы в треугольнике: медиана делит треугольник на два равновеликих по площади треугольника → s abk = s bck = 1/2 × s abc = 1/2 × 90 = 45 рассмотрим ∆ авс: по свойству биссектрисы в треугольнике: биссектриса угла треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам → ав / ас = bd / cd = 2 / 1 значит, bd = 2x , cd = 1x, ab = 2y, ac = 1y ak = kc = 1/2 × ac = 1/2 × y = y / 2 рассмотрим ∆ авк: по свойству биссектрисы в треугольнике: ав / ак = 2y / ( y/2 ) = 4 / 1 значит, ве = 4z , ek = 1z если угол одного треугольника равен углу другого треугольника, то площади этих треугольников относятся как произведения сторон, заключающих равный угол → s bck / s bed = ( bk × bc )/( be × bd ) = ( ( 4z + z ) × ( 2x + 1x ) ) / ( 4z × 2x ) = ( 5z × 3x ) / ( 4z × 2x ) = 15/8 s bed = ( 45 × 8 ) / 15 = 3 × 8 = 24 s edck = s bck – s bed = 45 – 24 = 21 ответ: s edck = 21
Популярные вопросы