Вромбе диагонали взаимно перпендикулярны, являются биссектрисами углов ромба и в точке пересечения делятся пополам. пусть ов=х. тогда в прямоугольном треугольнике оав ав=2*х, так как угол оав=30°. по пифагору ао=√(4х²-х²)=х√3. тогда ас=х*2√3. в треугольнике сав ак - биссектриса угла сав, значит по свойству биссектрисы внутреннего угла треугольника ск/вк=ас/ав или (2х-12)/12 =х*2√3/2х. или (2х-12) =12√3. отсюда х=6+6√3. итак, db=2х, ас=2х√3. площадь ромба равна s=d*d/2 или s=db*ac/2 = 2x*2х√3/2 = x²*2√3. подставим значение х: s=(6+6√3)²*2√3 = (36+72√3+108)*2√3 = 72√3+432+216√3= 432+288√3 ≈ 930,2cм² второй вариант: в тр-ке авк < kab=15°, < abk=120° и < bka=45°. по теореме синусов 12/sin15°= ab/sin45°, откуда ав=12*sin45°/sin15°. итак ав = 12*0,707/0,259 ≈ 32,76. площадь ромба равна s=а²*sinα или s = 32,76²*0,866≈ 929,4см² результаты равны с учетом погрешностей значений корней и синусов углов.
Ответ дал: Гость
1. обозначим углы треугольника авс буквами а, в и с.
а: в: с=2: 3: 4, значит а=2х, в=3х, с=4х
а+в+с=180 град, т.е. 2х+3х+4х=180
9х=180
х=180: 9
х=20 (град)
а=2х=2*20град=40 град
в=3х=3*20 град=60 град
с=4х=4*20 град=80 град
ответ: 40, 60, 80.
2.обозначим катеты прямоугольного треугольника буквами а и в.
по условию а: в=7: 12, значит а=7/12 в
площадь треугольника равна 168 см кв.
s=1/2 * ab
1/2*ab=168
ab=168*2=336(см кв)
7/12 в*в=336
в*в=336: 7*12
в*в=576
в= корень из 576
в=24 (см)
а=7/12 в=7/12 *24 =14 (см)
ответ6 14 см и 24 см
Ответ дал: Гость
обозначим треугольник, как авс, с основанием ас. ан и вк-высоты, пересекающиеся в точке о.
угол аов=140 градусов (по условию), угол вон=40 градусов (т.к. является смежным углом с углом аов). треугольник вон-прямоугольный, т.к. ан-высота, следовательно угол овн=90-40=50 градусов. вк-высота проведенная к основанию, но т.к. треугольник равнобедренный то вк так же является биссектрисой угла в, значит угол аво= углу овн=50 градусов, значит угол в=100 градусов.
Популярные вопросы