пусть треугольник bac равнобедренный, ab=ac=10 см.
возьмем произвольную точку k на основании bc и проведем km||ac иkn||ab
km=an, kn=am -противоположные стороны параллелограмма.
докажем, что km=bm. угол 2=углу 4 как соответственные углы при ac||km и секущей kc. но угол 4=углу 1 (углы при основании равнобедренного треугольника). отсюда угол 2=углу 1. значит треугольник bmk равнобедренный и km=bm как его боковые стороны.
аналогично докажем, что kn=nc. угол 3=углу 1 как соответственные углы при ab||kn и секущей kb. но угол 1=углу 4 (углы при основании равнобедренного треугольника). отсюда угол3 =углу 4. значит треугольник knc равнобедренный и kn=nc как его боковые стороны.
пусть х см содержит одна часть, тогда средние линии треугольника имеют длины 2х см, 2х см и 4х см. сторона треугольника в два раза больше средней линии. значит, длины сторон будут равны 4х см, 4х см и 8х см. зная периметр, составляем уравнение
4х+4х+8х=45
16х=45
х=2,8125
1 сторона: 4 · 2,8125 = 11,25 см
2 сторона: 4 · 2,8125 = 11,25 см
3 сторона: 8 · 2,8125 = 22,5 см
Ответ дал: Гость
s = пr^2. радиус описанной около прям. тр-ка окружности равен половине гипотенузы. найдем ее.
пусть х -гипотенуза, тогда (х-2) и (х-4) - катеты.
Популярные вопросы