1.в сечении мы получили прямоугольник, причем длинной будет высота цилиндра, т.е. 36=6*а а=6(см)-хорда, тогда рассмотрим треугольник 2 радиуса и найденная хорда, высота его по условию равна 4, тогда радиус равен корень из (6/2)^2+4^2=9+16=5^2 т.е. радиус цилиндра равен 5. 2.рассмотрим первое осевое сечение-это равнобедренный равнобедренный треугольник с углом при вершине 120 градусов и высотой 1, проведем высоту и получим прямоугольный треугольник с углом 60 и катетом 1, по теореме, о тем, что напротив угла 30 градусов находится катет в 2 раза меньший гипотенузы, получим, что гипотенуза равна 2. а гипотенуза является образующей, рассмотрим 2ое сечение теперь это равносторонний треугольник т.к. угол при вершине 60 градусов. а площадь его s= 2*2* sin 60/2 ответ: s=√3
Ответ дал: Гость
a^2=b^2-(b\2) 64=b^2-b^2\4
256=3b^2
256\3=b^2
b=16√3\3=9, 24
Ответ дал: Гость
m=2rsin(a/2)
12√3=2rsin(120/2)
12√3=2r*√3/2
r=12
длина дуги равна
l=2*pi*r*a/360=2*pi*12*120/360=8*pi
площадь сектора равна произведению половины длины сектора на радиус
s=1/2*p*r=4*pi*pi*12=48*pi^2
Ответ дал: Гость
полученный теуг-к амв- прямоугольный (угол амв=90). угол авм является смежным данному углу авс, значит авм=180-120=60. угол мав=180-(60+90)=30. а в прямоугольном треуг-ке катет, лежащий против угла 30 градусов равен половине гипотенузы, значит, вм=1/2ав=1/2 *18=9
Популярные вопросы