правильный шестиугольник вписан в окружность, по формуле вычисления стороны правильного шестиугольника вписанного в окружность имеем, что а=r (сторона шестиугольника равна радиусу описааной около него окружности) значит радиус окр. равен 3, следовательно находим длину окр. по формуле l=2пr=2*3,14*3=28,26 и площадь круга по формуле s=пr^2 =3/14*9=28,26
Ответ дал: Гость
∆mda = ∆mdc, ∆ mcb = ∆ mab площадь поверхности пирамиды равна 2* s ∆ mda + 2* s ∆ mcb + s abcd dm ┴ cd по условию, тогда по теореме пифагора найдем mc: mc = 5√2 s∆mdc = ½ * cd * md = ½ * 5 * 5 = 25 /2 по теореме о трех перпендикулярах cm ┴ cb тогда s ∆ mcb = ½ * 5√2 * 5 = 25√2/2 s поверхности = 2* 25/2 + 2 * 25√2/2 + 25 = 50 +25√2 приблизительно равно 83
Ответ дал: Гость
площадь треугольника равна 1/2 произведения основания на высоту, проведённую к этой стороне.
известно, что средняя линия параллельна стороне, к которой проведена высота. т.к. средняя линия - это половина параллельной ей стороны, то сама сторона равна 2*11=22 см.
итак, площадь треугольника равна s=1/2*22*25=275 (см кв.)
Популярные вопросы