1.в сечении мы получили прямоугольник, причем длинной будет высота цилиндра, т.е. 36=6*а а=6(см)-хорда, тогда рассмотрим треугольник 2 радиуса и найденная хорда, высота его по условию равна 4, тогда радиус равен корень из (6/2)^2+4^2=9+16=5^2 т.е. радиус цилиндра равен 5. 2.рассмотрим первое осевое сечение-это равнобедренный равнобедренный треугольник с углом при вершине 120 градусов и высотой 1, проведем высоту и получим прямоугольный треугольник с углом 60 и катетом 1, по теореме, о тем, что напротив угла 30 градусов находится катет в 2 раза меньший гипотенузы, получим, что гипотенуза равна 2. а гипотенуза является образующей, рассмотрим 2ое сечение теперь это равносторонний треугольник т.к. угол при вершине 60 градусов. а площадь его s= 2*2* sin 60/2 ответ: s=√3
Ответ дал: Гость
треугольник cdh прямоугольный. угол cdh=30 градусов => что ch=1/2 cd.
пусть ch=x ,тогда cd=2х. ab -высота. сн=ав. ав+cd=36 получаем что cd+ch=36. значит x+2x=36. отсюда х=12. высота найдена. найдем боковую сторону: 36-ch. сd=36-12=24. тк треугольник cdh прямоуг. тогда dh найдем по теореме пифагора: dh^{2}=cd^{2}-ch^{2}. получаем dh^{2}=24^{2}-12^{2}=576-144=432. dh=12\sqrt{3}. найдем нижнее(оно же большее основание) 8\sqrt{3}+12\sqrt{3}=20\sqrt{3}. найдем площадь трапеции: s=1/2*ad*bc. s= 1/2*8\sqrt{3}*20\sqrt{3}=240.
ответ: площадь s=240, высота ab=12.
Ответ дал: Гость
дан треугольник авс, ав=вс=10 м, ас=16м, r-радиус описанной окружности, r- радиус вписанной окружности. bk - высота, s- площадь треугольника авс, р-периметр треугольника авс. решение: s=(ac*bc*ab)/4r. s=1/2*p*r. s=1/2bk*ac. рассм треуг-к вкс - прямоугольный, по т. пифагора вс^2=bk^2+kc^2. rc=1/2ac, bk^2=bc^2-kc^2=100-64=36, bk=6 м. s=1/2bk*ac=1/2*6*16=48 м.r=(ac*bc*ab)/(4*s)=(10*10*16)/(4*48)=25/3 м.
Популярные вопросы