пусть боковая сторона равна х, тогда основание равно х+17.
периметр равен 77.
составляем уравнение:
х+х+(х+17)=77
2х+х+17=77
3х=77-17
3х=60
х=20, из этого следует, что две боковые стороны равны по 20 см, а основание равно 20+17=37 см
Ответ дал: Гость
ответ: 20 см
решение: смотри рисунок.
пусть треугольник bac равнобедренный, ab=ac=10 см.
возьмем произвольную точку k на основании bc и проведем km||ac иkn||ab
km=an, kn=am -противоположные стороны параллелограмма.
докажем, что km=bm. угол 2=углу 4 как соответственные углы при ac||km и секущей kc. но угол 4=углу 1 (углы при основании равнобедренного треугольника). отсюда угол 2=углу 1. значит треугольник bmk равнобедренный и km=bm как его боковые стороны.
аналогично докажем, что kn=nc. угол 3=углу 1 как соответственные углы при ab||kn и секущей kb. но угол 1=углу 4 (углы при основании равнобедренного треугольника). отсюда угол3 =углу 4. значит треугольник knc равнобедренный и kn=nc как его боковые стороны.
обозначим треугольник, как авс, с основанием ас. ан и вк-высоты, пересекающиеся в точке о.
угол аов=140 градусов (по условию), угол вон=40 градусов (т.к. является смежным углом с углом аов). треугольник вон-прямоугольный, т.к. ан-высота, следовательно угол овн=90-40=50 градусов. вк-высота проведенная к основанию, но т.к. треугольник равнобедренный то вк так же является биссектрисой угла в, значит угол аво= углу овн=50 градусов, значит угол в=100 градусов.
Популярные вопросы