пусть медиана пересекает сторону ва в точке о. рассмотрим треугольник аос ар в нём биссектриса . точка р это точка пересечения биссектрисы тупого угла и медианы со. биссектриса делит противоположную сторону на отрезки, пропорциональные прилежащим сторонам ао=3,5ас=9 тогда рс: ор= ас: ао ср: ао= 9: 3,5=90: 35=18: 7
Ответ дал: Гость
треугольник авс. ав и вс - катеты, угол с=90 градусов. так как треугольник - прямоугольный, то его площадь - это половина произведения катетов. s=0.5*а*b
в любом треугольнике площадь высчитывается по формуле "половина основания умножить на высоту*. высота, проведенная из прямого угла к гипотенузе, равна h по условию, гипотенуза=c по условию. тогда s=0.5*c*h
так как это один и тот же треугольник, то 0.5*а*b=0.5*c*h
делим правую и левую части на 0.5 и получаем искомое равенство. a*b=c*h. что и требовалось доказать.
Популярные вопросы