Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
(dc)^2=(bc)^2-(bd)^2=625-576=49
dc=7
(ad)^2=(ab)^2-(bd)^2=625-576=49
ad=7
ac=ad+dc=7+7=14
sabc=ac*ab/2=24*14/2=168
вариант в; если отрезок dk=15см, тогда dc=8 см и ck=7 см ( dc+ck=dk) 8+7=15
объем цилиндпа v = пrквадh, здесь r - радиус основания.
радиус описанной около прямоуг. треуг-ка окружности равен половине гипотенузы. а высота h цилиндра равна боковым ребрам призмы - 8/п.
найдем гипотенузу в прям. тр-ке авс( угол с - прямой):
ав = кор из (49 + 64) = кор из 113. тогда
r = (кор113)/2. теперь находим объем цилиндра:
v = п*113*8/(4п) = 216.
ответ: 216.
находим точки пересечения параболы с осю ox
8-x^2=0
x^2=8
x1=+sqrt(8)
x2=-sqrt(8)
находим точки пересечения параболы с прямой
8-x^2=4
x^2=4
x1=+2
x2=-2
s1=2*int от 0 до sqrt(8) (8-x^2) dx=2*(8x-x^3/3) от 0 до sqrt(8)=
= 2*(8*sqrt(8)-8*sqrt(8)/3)=2*(16*sqrt(2)-16sqrt(2)/3)=64sqrt(2)/3
s2=2*int jn 0 до 2 (8-x^2)dx =2*(8x-x^3/3) от 0 до 2 =
= 2*(16-8/3)=2*40/3
s=s1-s2=64sqrt(2)/3-80/3=(64sqrt(2)-80)/3
Популярные вопросы