Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
например, так oo1 = oa + aa1 + a1o1 = -⅓(ab + ac) + aa1 + ⅓(a1b1 + a1c1) 3·oo1 = -⅓(ab+ac+bc+ba+ca+cb) + aa1 + bb1 + cc1 + ⅓(a1b1+a1c1+b1c1+b1a1+c1a1+c1b1) = aa1 + bb1 + cc1.
одна из формул, которая используеться, если у нас есть прямокуугольник с высотой, опущеной до гипотенузы:
тепер рассматриваем прямоугольник abd, за теоремой пифагора находим ab:
из этого же треугольника находим синус альфа. синус - отношение прилягающего катета к гипотенузе.
пусть одна сторона равна x, поскольку треугольник равнобедренный то и вторая сторона равна x, а третья равна (x+17), тогда
x+x+(x+17)=77
3x=60
x=20
то есть стороны треугольника: 20; 20; (20+17)=37
доказать что в равнобедренном треугольнике авс медианы аn и сm к боковым равны между собой.
для этого докажем что треугольники амс и сna равны между собой,
1) угол а равен углу с по условию тк это равнобедр треуг
2) ас - общая
3) ам= аn тк, ав=вс, см и an медианы делящие стороны пополам следовательно и их пловинки равны
вывод: амс и сna равны по двум сторонам и углу между ними, занчит см=аn чтд
Популярные вопросы