Дано: авсд-ромб ас и вд-диагонали ас=12 см вд=16 см найти: р-периметр авсд розв'язок: 1) ас перетенається з вд у точці о трикутник аов-прямокутний тому, що нам відомо,що діагоналі ромба -перпендикулярні піфагора : ав=√oa²+ob²=√6²+8²=√36+64= =√100=10 см р=4*ав=4*10=40(см) в-дь: 40 см
Спасибо
Ответ дал: Гость
пусть сторона ромба равна 5x, тогда одна из его диагоналей равна 6x. диагонали ромба при пересечении образуют 4 прямоугольных треугольника, катеты в нашем случае равны 6x/2=3x и 40/2=20, тогда из прямоугольного треугольника определяем гипотенузу (сторону ромба) (3x)^2+(20)^2=(5x)^2 9x^2+400=25x^2 16x^2=400 x^2=25 x=5 то есть сторона ромба равна 5x=5*5=25, а периметр 4*25=100
Ответ дал: Гость
1)треугольник авд- прямоугольный, т.к. вд-высота на сторону ас, следовательно, угол вда=90 град, угол дав=20 град(по условию),
Популярные вопросы