Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
наклонная, высота опущенная с точки a на плоскость и плоскость образуют прямоугольный треугольник abc, где ab=6 и угол acb=30°
катет (высота) прямоугольного треугольника лежит противь угла 30°, то есть равен половине гипотенузы (наклонной), откуда наклонная равна 2*6=12
проецию находим по теореме пифагора
cb^2=(ac)^2-(ab)^2=144-36=108
cb=sqrt(108)=6*sqrt(3) - проекция
дано: sabcd-правильная пирамида
sm-апофема, sm=6
sh-высота, sh=3sqr(2)
найти: сторону основания пирамиды.
решение:
авсd-правильная пирамида, следовательно, в её основании лежит правильный многоугольник, т.е. квадрат.
рассмотрим треугольник som, в нём so-высота пирамиды, следовательно so перпендикулярно основанию.
по теореме пифагора ом=sqr(sm^2-so^2)=sqr(6^2-(3sqr(2))^2)=
sqr(36-18)=sqr18=3sqr(2)
теперь найдём сторону основания пирамиды.
она равна 2ом=2*3sqr(2)=6sqr(2)
Популярные вопросы