Центр окружности находится на пересечении перпендикуляра к середине отрезка ав и оси оу. уравнение отрезка ав: это канонический вид уравнения. это же уравнение в общем виде: х-3 = у-8, х-у+5 = 0. в виде уравнения с коэффициентом: у = х+5. находим координаты середины отрезка ав (точка к): к((3-4)/2=-0,5; (1+8)/2=4,5) = (-0,5; 4,5). уравнение перпендикуляра к ав: сд: -х+с. подставим координаты точки к в это уравнение: 4,5 = ,5)+с, отсюда с = 4,5-0,5 = 4. коэффициент с является значением точки пересечения прямой сд с осью оу, поэтому координаты точки о (центра окружности): с(0; 4). радиус окружности равен расстоянию ао: ао = √(())²+(4-1)²) = √(16+9) = √25 = 5. ответ: уравнение окружности х²+(у-4)² = 5².
Спасибо
Ответ дал: Гость
Taty как найти диоганаль прямоугольника, если известны его стороны? докажите равенство диагоналей прямоугольника , используя теорему пифогора. б) сторона прямоугольника: 2,4 дм и 7 см;
Ответ дал: Гость
обходим треуг. и выписываем равенства х+у=12, у+z=9, z+х=6 ,где х,у,z- искомые отрезки (они попарно равны по свойству отрезков двух касательных, проведенных к окружности из одной точки сложим почленно 2(х+у+z)=27, x+y+z=13,5 , но т.к. х+у=12 , то 12+z=13,5 и z=1,5. аналогично х+9=13,5,
Популярные вопросы