Центр окружности находится на пересечении перпендикуляра к середине отрезка ав и оси оу. уравнение отрезка ав: это канонический вид уравнения. это же уравнение в общем виде: х-3 = у-8, х-у+5 = 0. в виде уравнения с коэффициентом: у = х+5. находим координаты середины отрезка ав (точка к): к((3-4)/2=-0,5; (1+8)/2=4,5) = (-0,5; 4,5). уравнение перпендикуляра к ав: сд: -х+с. подставим координаты точки к в это уравнение: 4,5 = ,5)+с, отсюда с = 4,5-0,5 = 4. коэффициент с является значением точки пересечения прямой сд с осью оу, поэтому координаты точки о (центра окружности): с(0; 4). радиус окружности равен расстоянию ао: ао = √(())²+(4-1)²) = √(16+9) = √25 = 5. ответ: уравнение окружности х²+(у-4)² = 5².
Спасибо
Ответ дал: Гость
р=πrn/180,
а) 30°=0,52б) 45°=0,79
в) 60°=1,05
г) 90°=1,57д) 180°=3,14
Ответ дал: Гость
решение. обозначим трапецию как abcd. обозначим длины оснований трапеции как a (большее основание ad) и b (меньшее основание bc). пусть прямым углом будет ∠a. площадь прямоугольника, стороны которого равны основаниям трапеции, будет равна s = ab из вершины c верхнего основания трапеции abcd опустим на нижнее основание высоту ck. высота трапеции известна по условию . тогда, по теореме пифагора ck2 + kd2 = cd2 поскольку большая боковая сторона трапеции по условию равна сумме оснований, то cd = a + b поскольку трапеция прямоугольная, то высота, проведенная из верхнего основания трапеции разбивает нижнее основание на два отрезка ad = ak + kd. величина первого отрезка равна меньшему основанию трапеции, так как высота образовала прямоугольник abck, то есть bc = ak = b, следовательно, kd будет равен разности длин оснований прямоугольной трапеции kd = a - b.то есть 122 + (a - b)2 = (a + b)2 откуда 144 + a2 - 2ab + b2 = a2 + 2ab + b2 144 = 4ab поскольку площадь прямоугольника s = ab (см. выше), то 144 = 4s s = 144 / 4 = 36 ответ: 36 см2 .
Популярные вопросы