угол 22,5 градуса образует с катетом (и гипотенузой тоже) биссектриса острого угла. при этом биссектриса (по известному свойству) делит противоположный углу катет в отношении 1/√2, считая от вершины прямого угла (то есть отношение равно отношению прилежащего катета к гипотенузе - то есть косинусу угла, "которого" биссектриса, между прочим : ) ). если положить катеты треугольника равными 1, то эти отрезки равны 1/(√2 + 1) и √2/(√2 + 1) (в сумме 1, отношение 1/√2).
чтобы получить нужный тангенс 22,5 градусов, надо длину меньшего отрезка (выходящего из прямого угла) разделить на прилежащий катет, то есть на 1.
tg(22,5) = 1/(√2 + 1) = √2 - 1.
Спасибо
Ответ дал: Гость
4b2-12b+9
y2+8yx+16x2
a2/9-b2
b2(8b2-3)
(p-9)(a+b)
4(16d4-c4)=4(2d-c)(2d+c)(4d2+c2)
-3(y-4)2
=(x+5((x+5)(x-5) x1,2=-5 x3=5
Ответ дал: Гость
дано: окружность (r), ав - диаметр, см - хорда, см|ав, к - точка пересечения ав и см, ак: кв=9: 16, см=48см
Популярные вопросы