угол 22,5 градуса образует с катетом (и гипотенузой тоже) биссектриса острого угла. при этом биссектриса (по известному свойству) делит противоположный углу катет в отношении 1/√2, считая от вершины прямого угла (то есть отношение равно отношению прилежащего катета к гипотенузе - то есть косинусу угла, "которого" биссектриса, между прочим : ) ). если положить катеты треугольника равными 1, то эти отрезки равны 1/(√2 + 1) и √2/(√2 + 1) (в сумме 1, отношение 1/√2).
чтобы получить нужный тангенс 22,5 градусов, надо длину меньшего отрезка (выходящего из прямого угла) разделить на прилежащий катет, то есть на 1.
tg(22,5) = 1/(√2 + 1) = √2 - 1.
Спасибо
Ответ дал: Гость
радиус окружности описанной вокруг многоугольника определяется по формуле
r=a/(2*sin(360/2*
откуда
а=2r*sin(360/2n)
для правильного треугольника
a=2*5*sin(60°)=10*sin(60°)=5*sqrt(3)
для правильного 9-угольника
a=2*5*sin(20°)=10*sin(20°)
для правильного 18-угольника
a=2*5*sin(10°)=10*sin(10°)
то есть
ab=5*sqrt(3)
bc=10*sin(20°)
cd=10*sin(10°)
вокруг четырехугольника можно описать окружность если сумы противоположных сторон равны, то есть
ab+cd=bc+ad
5*sqrt(3)+10*sin(10°)=10*sin(20°)+ad
ad= 5*sqrt(3)+10*sin(10°)-10*sin(20°)=
=5*sqrt(3)+10*(sin(10°)-sin(20°))
Ответ дал: Гость
треугольник abc.
центр вписанной окружности о лежит на пересечении биссектрисс ak, bf, cn.
т.к. треугольник правильный, его биссектриссы - медианы и высоты.
искомый радиус это отрезки ok=of=on, они равны 1/3 биссектриссы (по св-ву медиан, пересекаются и делятся в отношении 2: 1 считая от вершины)
Популярные вопросы