радиус окружности описанной вокруг многоугольника определяется по формуле
r=a/(2*sin(360/2*
откуда
а=2r*sin(360/2n)
для правильного треугольника
a=2*5*sin(60°)=10*sin(60°)=5*sqrt(3)
для правильного 9-угольника
a=2*5*sin(20°)=10*sin(20°)
для правильного 18-угольника
a=2*5*sin(10°)=10*sin(10°)
то есть
ab=5*sqrt(3)
bc=10*sin(20°)
cd=10*sin(10°)
вокруг четырехугольника можно описать окружность если сумы противоположных сторон равны, то есть
ab+cd=bc+ad
5*sqrt(3)+10*sin(10°)=10*sin(20°)+ad
ad= 5*sqrt(3)+10*sin(10°)-10*sin(20°)=
=5*sqrt(3)+10*(sin(10°)-sin(20°))
Ответ дал: Гость
сумма углов треугольника равна 180°, т.е. ∠а + ∠в + ∠с = 180°.
по условию ∠a : ∠b : ∠c = 2 : 3 : 4, т.е. углы пропорциональны указанным числам, т.е. ∠а содержит 2 каких-то одинаковых части, ∠в - 3 таких части, ∠с - 4 таких части.
пусть в одной части х°, тогда ∠а = (2х)°, ∠в = (3х)°, ∠с = (4х)°. составим и решим уравнение:
Популярные вопросы