Обозначим мальчиков M1, M2, ..., M15, а девочек – D1, D2, ..., D15 так, чтобы M1-D1, M2-D2, ..., M15-D15 было единственным разбиением на пары из условия задачи. Предположим, что каждый мальчик позвонил хотя бы двум девочкам. Нарисуем стрелку от каждой девочки Di к мальчику Mi, с которым она находится в паре, а от каждого мальчика Mi – к другой (отличной от Di) девочке, которой он звонил. Тогда от каждого ребёнка ведёт по стрелке. Если мы будем двигаться по стрелкам (начав от произвольной девочки), то рано или поздно мы попадём к девочке, которая уже встречалась в строящейся цепочке. Таким образом, в соответствующем графе есть цикл. Объединим в этом цикле каждого мальчика с девочкой, к которой от него ведет стрелка; остальные пары оставим без изменения. Мы получили другое разбиение на пары, что противоречит условию.
Следовательно, найдётся мальчик, который звонил ровно одной девочке. Если отбросить эту пару, число звонков уменьшится не больше, чем на 15 – максимальное возможное количество звонков этой девочке. После этого снова найдется мальчик, сделавший ровно один звонок одной из оставшихся девочек. Отбросив эту пару, уменьшим количество звонков не более, чем на 14, и т. д. Итого, было сделано не более 15 + 14 + ... + 2 + 1 = 120 звонков.
Ровно 120 звонков получается, например, если каждой девочке Di звонили мальчики M1, M2, ..., Mi.
Ответ.120 звонков.
Спасибо
Популярные вопросы