Решение: рассмотрим функцию f(x)=sin x-x*cos(x) на промежутке [0; pi\2]. она непрерывна на этом промежутке и для каждого х из этого промежутка существует проиводная. ищем проиводную: f’(x)=cos x-cos x+x*sin x=x*sin x f’(x)> 0 на промежутке (0; pi\2),значит f(x) возрастает на (0; pi\2), f(0)=sin 0+0*cos 0=0 f(0)=0 значит при х є (0; pi\2) f(x)> f(0)=0 или sin x-x*cos(x)> 0, то есть sinx> xcosx, что и требовалось доказать.
Ответ дал: Гость
5 на ослице и 7 на муле
Ответ дал: Гость
сначало записываешь эти числа в порядке возрастания, потом все числа складываешь и делишь на их количество =)
Популярные вопросы