Найдем производную у`=(6x-3tgx-1,5π +2)`= 6-3·(1/cos²x). решим уравнение y`=0 3/cos²x = 6; cos²x=1/2 ⇒ cosx = - √2/2 или cosx = √2/2 х= ± arccos(- √2/2 )+2πk, k ∈ z или х= ±arccos(√2/2 )+2πn, n ∈ z; х= ±(π - arccos( √2/2 ))+2πk, k ∈ z или х= ±(π/4)+2πn, n ∈ z; х= ±(π- (π/4))+2πk, k ∈ z. х= ±(3π/4)+2πk, k ∈ z. указанному отрезку принадлежат два значения π/4 и -π/4 находим значения самой функции в этих точках и на концах отрезка и выбираем среди них наибольшее и наименьшее. у(-π/3)=6·(-π/3)-3tg(-π/3)-1,5π+2=-2π-3·(-√3)-1,5π+2=-3,5π+3√3+2≈-2,32; у(-π/4)=6·(-π/4)-3tg(-π/4)-1,5π+2=(-3π/2)-3·(-1)-1,5π+2=-3π+3+2=-3π+5≈-4,42 у(π/4)=6·(π/4)-3tg(π/4)-1,5π+2=(3π/2)-3-1,5π+2=-1. у(π/3)=6·(π/3)-3tg(π/3)-1,5π+2=2π-3·√3-1,5π+2=(π/2)+2-3·√3≈-1,53. у(-π/4)=5-3π наименьшее значение функции. у(π/4)=-1 наибольшее значение функции
Популярные вопросы