Здесь Вы можете найти ответы на многие вопросы или задать свой вопрос!
полная запись решения f'(x)=(1'*)'*1))/(12x^4)^2-(5'*18x^3-(18x^3)'*5)/(18x^3)^2-(1'*4x^2-(4x^2)'*1)/(4x^2)^2+2'
const'=0 x'=1 (x^n)' =nx^(n-1) (u/v)'=(u'v-v'u)/v^2
ответ: f'(x)=-48x^3/144x^8+270x^2/424x^6+8x/16x^4
f'(x^=-1/3x^5+135/212x^4+1/2x^3
f'(x)=-0,3055556x^5+0,6367925x^4+0,5x^3
х- сторона квадрата и ширина прямоугольника
х-2 - длина прямоугольника
х² - площадь квадрата
х(х-3) - площадь прямоугольника
х²-х(х-3)=15
х²-х²+3х=15
3х=15
х=15: 3=5
функция квадратичная, графиком является парабола, ветви направлены вверх, т.к.a> 0. найдем вершину параболы т.о(х; у).
х= -в/2а=4/2=2
у(х)=4-8-2=-6, значит вершина т.о (2; -6).
у= -6 - это min функции, а т.к. ветви направлены вверх, значит область значений от -6 до +бесконечности. (где -6 квадр. скобка)
Популярные вопросы